Georgia Institute of TechnologypicoForce Laboratory
Zinc Oxide nanobeltProfile: Elisa RiedoNanofriction plot

Debin Wang

Ph.D Candidate/Graduate Research Assistant

School of Physics and Center for Organic Photonics and Electronics

Tel.: 404-894-0941 Fax: 404-894-9958 Email: db_wang[at]

Current position:

Postdoc Fellow, Lawrence Berkeley National Lab


Georgia Institute of Technology, Atlanta, GA, USA

Ph.D. Physics, Aug 2010

M.S. Physics, May 2007

Peking University, Beijing, China

B.S. Physics, 2003

B.A. Economics, 2003

Research Experience

Doctoral Research: School of Physics, Georgia Institute of Technology, 2006-present

• Developing a scanning probe nanolithography technique that can: (1) direct-write reduced graphene oxide nanostructures for graphene based nanoelectronic, (2) fabricate conjugated polymer nanowires (3) modify polymer surface wettability at nanometer scale.

• Developing a nanopatterning protocol to assemble proteins, DNAs, metallic nanoparticles on polymer surfaces.

• Scanning probe nanotribology study of local surface energy and wettability.

• Electrical transport study of organic nanoelectronic materials using AFM electrical modules (EFM/KPM/CAFM).

Graduate Internship Research: Global Research Division, CIBA Vision Corporation, 2008

• AFM morphology and surface roughness study of various branded silicone hydrogel contact lenses.

• Quantitative nanomechanical testing of hardness and elastic modulus of silicone hydrogel contact lenses.

Undergraduate Research: State Key Mesoscopic Physics, Peking University, 2002-2003

• Synthesis of diluted magnetic semiconductor ZnMnO nanowires via vapor phase growth.

• Morphological, Optical and magnetic characterization of ZnMnO nanowires.


• Chinese Government Scholarship for Outstanding Self-Financed Students Abroad (2010)

• Amelio Fellow Award for Excellence in Graduate Research (2010)

• Georgia Tech Center for Organic Photonics and Electronics Graduate Fellowship (2009)

Refereed Journal Publications

1.Z. Wei,* D. Wang,* S. Kim, S.-Y., Kim, C. Berger, Y. Hu, A. R. Laracuente, S. R. Marder, W. P. King, W. A. de Heer, P. E. Sheehan, E. Riedo, "Nanoscale tunable reduction of graphene oxide for graphene electronics", Science, 328, 1373 (2010) (*: shared first authorship)

2.D. Wang, S. Kim, W. D. Underwood, W. P. King, C. L. Henderson, S. R. Marder, E. Riedo, "Direct Writing and Characterization of Poly(p-phenylene vinylene) Nanostructures", Appl. Phys. Lett.,95, 233108, (2009)

3.D. Wang, V. Kodali, W. D. Underwood, J. Jarvholm, T. Okada, S. C. Jones, M. Rumi, Z. Dai, W. P. King, S. R. Marder, J. E. Curtis, E. Riedo, “Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects”, Adv. Funct. Mater., 19, 3696 (2009). Appeared on journal front cover.

4. D. Wang, T. Okada, R. Szoszkiewicz, S. C. Jones, M. Lucas, J. Lee, W. P. King, S. R. Marder and E. Riedo, "Reversible Nanoscale Wettablity Modifications by Thermochemical Nanolithography", Mater. Res. Soc. Symp. Proc., 1059, KK-10-36 (2008).

5. D. Wang, T. Okada, R. Szoszkiewicz, S. C. Jones, M. Lucas, J. Lee, W. P. King, S. R. Marder and E. Riedo, "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability", Appl. Phys. Lett., 91, 243104 (2007). Selected by Virtual Journal of Nanoscale Science & Technology, 16, 26, (2007)

6. Y.Q. Chang, D. Wang, X.H.Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu and D.P. Yu, "Synthesis, optical, and magnetic properties of diluted magnetic semiconductor ZnMnO nanowires via vapor phase growth", Appl. Phys. Lett., 83, 4020 (2003). Citation: 104


1. E. Riedo, S. Marder, D. Wang, J. Curtis, S. Jones, T. Okada, R. Szoszkiewicz, V. Kodali, C. Henderson, Y. Hua, W. de Heer. Thermochemical nanolithography: components, systems and methods. US Patent Application No.12/791,466 and International Patent Application No. PCT/US10/36871 (June/2010)

Book Chapters

1. D. Wang, R. Szoszkiewicz, V. K. Kodali, J. E. Curtis, S. R. Marder, and E. Riedo, “A New AFM-Based Lithography Method: Thermochemical Nanolithography”, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, B. Bhushan Ed. (Springer, New York, 2010, ISBN: 978-3642104961), chap. 22.

2. D. Wang, V. K. Kodali, J. Curtis, and E. Riedo, “Thermochemical Nanolithography using Atomic Force Microscopy“, in Tip-Based Nanofabrication: Fundamentals and Applications, A. A. Tseng, Ed. (Springer, New York, 2011), in preparation.

Conferences and Presentations

1. “Thermo-Chemical Nanolithography of Nanotemplates for Assembling Bio-Molecules”, American Physical Society March Meeting, Pittsburgh, PA, 2009

2. “High-Speed, Sub-15 nm Feature Size Thermochemical Nanolithography”, Molecular Foundry User Meeting, Lawrence Berkeley National Laboratory, Berkeley, CA, 2008

3. “High-Speed High-Resolution Thermo-Chemical Nanolithography”, Annual International Scanning Probe Microscopy Meeting, Seattle, WA, 2008

4. “Thermochemical Nanolithography—A direct and versatile nanolithography tool”, National Science Foundation Center on Materials and Devices for Information Technology Research Retreat, Atlanta, GA, 2008

5. "Reversible Nanoscale Local Wettability Modifications by Thermochemical Nanolithography", Materials Research Society Fall Meeting, Boston, MA, 2007

6. “Thermochemical Nanolithography - a promising patterning technique for bio/chemical applications and devices”, Forum on Organic Optoelectronics & Devices Seminar, Georgia Institute of Technology, Atlanta, GA, 2007

7. “High-Speed, Sub-15 nm Feature Size Thermochemical Nanolithography”, Solvay-COPE Symposium on Organic Electronics, Georgia Institute of Technology, Atlanta, GA, 2007

Last updated on Sep. 2010